TORONTO, ON (April 5 2022)

Download the 2021 Canada Gairdner Awards Press Release:
EN Press Release
FR Press Release

The Gairdner Foundation is pleased to announce the 2022 Canada Gairdner Award laureates, recognizing some of the world’s most significant biomedical and global health research and discoveries.

“Canadian scientists remain an example to follow as they continue to lead in global health research and discoveries that help create a more resilient society, country, and world. Congratulations to this year’s Canada Gairdner Award recipients, your work demonstrates the power of science to improve lives and solve major challenges facing humanity.”
– The Honourable Jean-Yves Duclos, Minister of Health

“Congratulations to the 2022 Gairdner Awards recipients for your outstanding discoveries and contributions to medical science! Pleased to see four Canadians among the world’s most creative and accomplished biomedical scientists. Your work is revolutionizing our understanding of the human body and how to live longer, healthier lives, right down to the cellular level.”
—The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

2022 Canada Gairdner International Award
The five 2022 Canada Gairdner International Award laureates are recognized for seminal discoveries or contributions to biomedical science:

Stuart H. Orkin, MD
David G. Nathan Distinguished Professor of Pediatrics, Harvard Medical School and Dana-Farber/Boston Children’s Cancer and Blood Disorders Center; Investigator, Howard Hughes Medical Institute, Boston Children’s Hospital.

Awarded “For the discovery of the molecular mechanism responsible for the switch from fetal to adult hemoglobin gene expression during human development and translating that knowledge into a novel treatment for the hemoglobin disorders — sickle cell disease and beta-thalassemia”

The work:
Dr. Stuart Orkin’s pioneering work in genetic disorders of hemoglobin spans four decades and has unraveled molecular mysteries behind how blood cells develop and how disorders of blood arise. His most recent studies led to the discovery of the molecular mechanism responsible for the switch from fetal (HbF) to adult (HbA) hemoglobin gene expression that occurs during human development. Capitalizing on genetic clues from human population studies, Orkin and colleagues established that the protein BCL11A acts as the critical silencer of HbF expression in adults. Recognizing that turning HbF expression back on could lessen disease severity of sickle cell disease and beta-thalassemia –genetic disorders affecting HbA production – he proposed downregulation of BCL11A as a therapeutic approach. Dialing down the amount of BCL11A would reactivate HbF expression and effectively substitute for mutant or deficient HbA in these disorders. His group first demonstrated that downregulation of BCL11A expression corrects sickle cell disease in engineered mice, an important proof-of-principle for therapeutic translation. He and colleagues identified a discrete site in a regulatory element within the BCL11A gene itself that, if deleted by CRISPR gene editing in blood stem cells, would impair BCL11A expression only within developing red blood cells, and safely reactivate HbF expression. This work laid the groundwork for highly promising, ongoing clinical trials in patients with sickle cell disease and beta-thalassemia, diseases that affect >5 million individuals worldwide. Reactivation of HbF in patients in these genetic therapy trials has yielded transformative results: freedom from sickle crises and anemia in sickle cell disease and transfusion-independence in beta-thalassemia.

The impact:
Much of what is known about the control of gene expression during blood cell development can be traced directly to Orkin’s pioneering studies. His discoveries have paved the way for clinical approaches that will revolutionize the treatment of hemoglobin disorders – sickle cell disease and beta-thalassemia – that affect more than five million people worldwide. Clinical trials that are currently underway establish the therapeutic potential of HbF reactivation. The outcomes of these trials will have significant impact for patients suffering from hemoglobin disorders around the globe, and will encourage the future development of cheaper and more readily accessible therapies for global application.


John E. Dick, PhD, FRS, FRSC
Senior Scientist and Canada Research Chair in Stem Cell Biology, Princess Margaret Cancer Centre, UHN; Professor, Department of Molecular Genetics, University of Toronto

Awarded “For the discovery and characterization of leukemic stem cells, providing insights into the understanding, diagnosis and treatment of acute myeloid leukemia”

The work:
Dr. John Dick made the first discovery of leukemia stem cells (LSC) in an acute myeloid leukemia (AML) patient. This finding established that individual cancer cells in the patient are not equal, rather they are organized as a cellular hierarchy where only rare leukemia cells possess self-renewal, the hallmark stem cell property. This discovery required two experimental components that Dick developed: a xenograft assay to detect LSC based on their ability to generate human leukemia upon transplantation into immune-deficient mice, and a method to purify leukemia cells into LSC and non-LSC populations. By combining functional LSC assays with genetic analysis, Dick tracked the complex evolutionary pathways of human leukemia development from normal blood stem cells to pre-leukemic stem cells that eventually generate LSC and AML up to a decade later. This work also showed that LSCs that can cause later relapse have already evolved prior to diagnosis, and can survive normal therapy procedures. Thus, LSC were directly linked to therapy failure and relapse in leukemia patients. The properties of LSC as reflected in their gene expression are predictive of therapy response and overall survival. Dick developed a 17-gene ‘stemness score’ that can be used clinically to determine patient risk of poor outcome and help guide therapeutic choice.

The impact:
Dick’s discovery of LSC changed the understanding of the underlying biology of cancer and stimulated exploration of cancer stem cells (CSCs) in other human cancers, including those affecting the breast, brain, colon, pancreas, skin and liver. His work highlighted the importance of investigating the properties of individual cells of the neoplastic clone, rather than bulk cancer cells and that special attention needs to be on the CSC that are the only cells capable of long term cancer propagation. The focus on CSC is revealing a number of properties that enable their survival in the face of therapy including dormancy, stress signaling as well as stemness programs that enable disease recurrence. Dick’s work points to the need to ensure that CSC are eradicated when therapy is delivered and the need for new therapies that target CSC vulnerabilities. The discovery that pre-leukemic stem cells are present many years prior to disease appearance and that relapse-fated LSC are already present at diagnosis both offer windows of opportunity to target pre-leukemia and relapse earlier to prevent disease and relapse from occurring, respectively. Dick’s findings offer clear direction for improving clinical outcomes in leukemia through LSC targeting and potentially in other cancers that adhere to the CSC model.


Pieter Cullis, PhD
Professor, Department of Biochemistry and Molecular Biology, University of British Columbia

Katalin Karikó, PhD
Senior Vice President RNA Protein Replacement Therapies, BioNTech SE; Professor, University of Szeged; Adjunct Professor, Perelman School of Medicine, University of Pennsylvania

Drew Weissman, MD, PhD
Roberts Family Professor in Vaccine Research; Director Penn Institute for RNA Innovation, Director, Vaccine Research, Infectious Diseases Division; Perelman School of Medicine, University of Pennsylvania

Awarded “For their pioneering work developing nucleoside-modified mRNA and lipid nanoparticle  (LNP) drug delivery: the foundational technologies for the highly effective COVID-19 mRNA vaccines”

The work:
Drs. Karikó and Weissman discovered how to engineer mRNA – a molecule that carries instructions for making proteins – so that it could be used to produce the desired protein after introduction into mammalian cells. They overcame the inflammatory activation and rapid degradation of mRNA by modifying the RNA so that it could resist quick breakdown and avoid activating RNA sensors. Despite skepticism from others, Drs. Karikó and Weissman saw the potential of RNA therapeutics for vaccines and other applications and the data kept leading them forward. However, one major challenge remained: how to introduce the mRNA into the body in a way that it would be protected from degradation, and could enter into the cells for protein production.

Dr. Cullis had been working with such packaging systems for the past 50 years. Dr. Cullis is a pioneer in lipid chemistry and the formation of lipid nanoparticles (LNP). From his foundational work, many different clinical applications of LNPs have been developed, such as delivering anticancer drugs to cancer tissues while limiting toxicity in normal tissues. In the case of mRNA the LNP are designed to form a protective bubble around the mRNA and enable delivery to the interior of target cells. The LNP technology is critical to the potency of mRNA vaccines.

Following the emergence of the SARS-CoV2 virus, various teams around the world began working on potential vaccines using the knowledge gained about the mRNA and lipid nanoparticle through decades. The idea for both the Pfizer/BioNTech and Moderna vaccines was to introduce modified mRNA molecules into the body via LNPs to briefly instruct human cells to produce the coronavirus’ spike protein. The LNP-activated immune system would recognize the encoded viral protein and develop antibodies and immune memory so that the immune system would attack the coronavirus when entering the body.

The impact:
The work of Drs. Karikó, Weissman and Cullis enabled the rapid availability of highly effective and safe COVID-19 mRNA vaccines, which has become an important tool for the control of COVID-19 pandemic. Importantly their pivotal discoveries also have the potential to revolutionize the future delivery of effective and safe vaccines, therapeutics and gene therapies. The success of the mRNA vaccines for COVID-19 suggests paths forward for similar vaccines for viral threats like influenza or HIV. Clinical trials are already underway to test mRNA vaccines to prevent diseases, caused by Zika virus, chikungunya and rabies infections.

The COVID-19 mRNA vaccines developed by Pfizer/BioNTech and Moderna are built on over 30 years of established scientific research and highlight the importance of basic and applied research, and international collaboration.


2022 John Dirks Canada Gairdner Global Health Award
The 2022 John Dirks Canada Gairdner Global Health Award laureate Is recognized for outstanding achievements in global health research:

Robert Harding Chair in Global Child Health, Co-Director, SickKids Centre for Global Child Health, Senior Scientist The Hospital for Sick Children; Professor Department of Pediatrics, Nutritional Sciences, and Public Health, University of Toronto; Founding Director, Center of Excellence in Women and Child Health and Institute for Global Health and Development, The Aga Khan University South-Central Asia, East Africa, United Kingdom

Awarded “For the development and evaluation of evidence-based interventions in child and maternal health for marginalized populations, focusing on outcomes for the ‘first thousand days’ of life.”

The work:
Dr. Zulfiqar Bhutta’s career has focused on the improvement of child and maternal health and nutrition among marginalized and rural populations, using evidence based strategies and interventions to improve outcomes in the “first thousand days” of life (pregnancy, childbirth, and the first two years of life).  Developing a unique collaboration between centres in Pakistan, United Kingdom and Canada, Bhutta has mobilized cluster randomized effectiveness trials (cRCTs) to gather data used to shape and improve intervention packages for community based maternal and newborn care, nutrition, and early childhood development.

The impact:
Dr. Bhutta’s work has been the foundation of multiple international guidelines, including changing WHO policy on the treatment of persistent diarrhea and malnutrition along with establishing lady health workers (LHW) as foundational members of community-based interventions in Pakistan, South Asia and sub-Saharan Africa. Further, his work provided the basis for the “Lancet 10” nutritional interventions used to inform global policy on malnutrition. Over the last two decades, his work on evidence-based interventions has helped guide global action plans to improve newborn health and survival. His rigorous approach to investigation has also challenged conventional wisdom, illustrating both the possibilities and limitations of vital interventions like community health workers.

Dr. Bhutta has worked extensively in low resource areas, using sustainable interventions that are available and affordable to disadvantaged populations. Through systematic investigation and analysis, he has established the foundations for current understandings of maternal and child health in rural, remote and conflict affected regions, and improved the survival and outcomes of world’s most vulnerable women and children. 


2022 Canada Gairdner Wightman Award
The 2022 Canada Gairdner Wightman Award laureate is a Canadian scientist recognized for outstanding leadership in medicine and medical science throughout their career:

Deborah J. Cook, MD, FRCPC, MSc (Epid), FRSC, OC
Distinguished University Professor of the Departments of Medicine, and of Health Research Methods, Evidence, and Impact of McMaster University; Fellow, Canadian Academy of Health Sciences; Fellow, Royal Society of Canada; Officer, Order of Canada; critical care physician of St. Joseph’s Healthcare Hamilton

Awarded “For pioneering research that has developed and defined evidence-based critical care medicine in Canada, informing best practices around the world.”

The work:
As the foremost authority in critical care medicine and health research methodology, Dr. Cook’s 30-year contributions to the design and the conduct of practice-changing clinical studies have led to major improvements in the care of hospital’s sickest patients. Her multi-method multi-disciplinary research interests include advanced life support, prevention of ICU-acquired complications, research ethics and end-of-life care.

She has addressed complex ethical challenges as patients receiving technology transition from life to death through the internationally-adopted ‘3 Wishes Project’.  This unique inter-professional model of end-of-life care encourages clinicians with different backgrounds to improve the dying experience for hospitalized patients by honouring their lives, easing family grief, and fostering humanism in practice. The 3 Wishes Project helps to identify and meet the needs of patients dying in hospital by eliciting and fulfilling final meaningful wishes for them, which has proven particularly helpful during the pandemic as family visits are limited for hospitalized patients, including those at the end-of-life.

Dr. Cook was a founding member of the first successful critical care research collaboration in the world – the Canadian Critical Care Trials Group – which flourished under her leadership as chair and champion of patient-centred investigator-initiated research.

The impact:
Dr. Cook’s research has helped to alleviate the enormous human and economic costs of critical illness for patients, families, healthcare systems and society. Dr. Cook has designed and conducted several landmark national and international studies on how best to prevent common and often lethal complications of critical illness such as blood clots, lung infections and gastrointestinal bleeding, providing key evidence for reviews and guidelines used at the bedside worldwide. She has passionately improved the field of critical care, reducing morbidity and saving lives in the ICU, impacting critical care practice across the globe. She has also championed compassionate end-of-life care models that impact families, patients and care providers.

Over her career, Dr. Cook has garnered dozens of national and international honours recognizing her outstanding contributions to critical care research. Her research focuses on creating measurable health, social and economic benefits for patients needing advanced life support. Her pioneering research has transformed critical care medicine and has had an enduring global impact on patients, practice, and policy.

About the Gairdner Foundation:
The Gairdner Foundation was established in 1957 by Toronto stockbroker, James Gairdner to award annual prizes to scientists whose discoveries have had major impact on scientific progress and on human health. Since 1959 when the first awards were granted, 402 scientists have received a Canada Gairdner Award and 96 to date have gone on to receive the Nobel Prize. The Canada Gairdner Awards promote a stronger culture of research and innovation across the country through our outreach programs including lectures and research symposia. The programs bring current and past laureates to universities across Canada to speak with faculty, trainees and high school students to inspire the next generation of researchers. Annual research symposia and public lectures are organized across Canada to provide Canadians access to leading science through Gairdner’s convening power. Gairdner is supported nationally by the Government of Canada.

For further information please contact Jordana Goldman

Download FR  Communiqué de presse – LES PRIX CANADA GAIRDNER 2020


TORONTO, ON (March 31 2020) – The Gairdner Foundation is pleased to announce the 2020 Canada Gairdner Award laureates, recognizing some of the world’s most significant biomedical research and discoveries. During these challenging times, we believe it is important to celebrate scientists and innovators from around the world and commend them for their tireless efforts to conduct research that impacts human health.

2020 Canada Gairdner International Award
The five 2020 Canada Gairdner International Award laureates are recognized for seminal discoveries or contributions to biomedical science:

Dr. Masatoshi Takeichi
Senior Visiting Scientist, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Professor Emeritus, Kyoto University, Kyoto, Japan
Dr. Rolf Kemler
Emeritus Member and Director, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany

Awarded “For their discovery, characterization and biology of cadherins and associated proteins in animal cell adhesion and signalling.”

Dr. Takeichi
The Work: The animal body is made up of numerous cells. Dr. Takeichi was investigating how animal cells stick together to form tissues and organs, and identified a key protein which he named ‘cadherin’. Cadherin is present on the surface of a cell and binds to the same cadherin protein on the surface of another cell through like-like interaction, thereby binding the cells together. Without cadherin, cell to cell adhesion becomes weakened and leads to the disorganization of tissues. Dr. Takeichi found that there are multiple kinds of cadherin within the body, each of which are made by different cell types, such as epithelial and neuronal cells. Cells with the same cadherins tend to cluster together, explaining the mechanism of how different cells are sorted out and organized to form functional organs.

Further studies by Dr. Takeichi’s group showed that cadherin function is supported by a number of cytoplasmic proteins, including catenins, and their cooperation is essential for shaping of tissues. His studies also revealed that the cadherin-dependent adhesion mechanism is involved in synaptic connections between neurons, which are important for brain wiring.

Dr. Kemler
The Work: Dr. Kemler, using an immunological approach, developed antibodies directed against surface antigens of early mouse embryos. These antibodies were shown to prevent compaction of the mouse embryo and interfered with subsequent development. Both Dr. Kemler and Dr. Takeichi went on to clone and sequence the gene encoding E-cadherin and demonstrate that it was governing homophilic cell adhesion.

Dr. Kemler also discovered the other proteins that interact with the cadherins, especially the catenins, to generate the machinery involved in animal cell-to-cell adhesion. This provided the first evidence of their importance in normal development and diseases such as cancer. It has been discovered that cadherins and catenins are correlated to the formation and growth of some cancers and how tumors continue to grow. Beta catenin is linked to cell adhesion through interaction with cadherins but is also a key component of the Wnt signalling pathway that is involved in normal development and cancer. There are approximately 100 types of cadherins, known as the cadherin superfamily.

Dr. Takeichi
The Impact: The discovery of cadherins, which are found in all multicellular animal species, has allowed us to interpret how multicellular systems are generated and regulated. Loss of cadherin function has been implicated as the cause of certain cancers, as well as in invasiveness of many cancers. Mutations in special types of cadherin result in neurological disorders, such as epilepsy and hearing loss. The knowledge of cadherin function is expected to contribute to the development of effective treatments against such diseases.

Dr. Kemler
The Impact: Human tumors are often of epithelial origin. Given the role of E-cadherin for the integrity of an epithelial cell layer, the protein can be considered as a suppressor of tumor growth. The research on the cadherin superfamily has had great impact on fields as diverse as developmental biology, cell biology, oncology, immunology and neuroscience. Mutations in cadherins/catenins are frequently found in tumors. Various screens are being used to identify small molecules that might restore cell adhesion as a potential cancer therapy.

Dr. Roel Nusse
Professor & Chair, Department of Developmental Biology; Member, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine. Virginia and Daniel K. Ludwig Professor of Cancer Research. Investigator, Howard Hughes Medical Institute

Awarded “For pioneering work on the Wnt signaling pathway and its importance in development, cancer and stem cells”

The Work: Dr. Nusse’s research has elucidated the mechanism and role of Wnt signaling, one of the most important signaling systems in development. There is now abundant evidence that Wnt signaling is active in cancer and in control of proliferation versus differentiation of adult stem cells, making the Wnt pathway one of the paradigms for the fundamental connections between normal development and cancer.

Among Dr. Nusse’s contributions is the original discovery of the first Wnt gene (together with Harold Varmus) as an oncogene in mouse breast cancer. Afterwards Dr. Nusse identified the Drosophila Wnt homolog as a key developmental gene, Wingless. This led to the general realization of the remarkable links between normal development and cancer, now one of the main themes in cancer research. Using Drosophila genetics, he established the function of beta-catenin as a mediator of Wnt signaling and the Frizzleds as Wnt receptors (with Jeremy Nathans), thereby establishing core elements of what is now called the Wnt pathway. A major later accomplishment of his group was the first successful purification of active Wnt proteins, showing that they are lipid-modified and act as stem cell growth factors.

The Impact: Wnt signaling is implicated in the growth of human embryos and the maintenance of tissues. Consequently, elucidating the Wnt pathway is leading to deeper insights into degenerative diseases and the development of new therapeutics. The widespread role of Wnt signaling in cancer is significant for the treatment of the disease as well. Isolating active Wnt proteins has led to the use of Wnts by researchers world-wide as stem cell growth factors and the expansion of stem cells into organ-like structures (organoids).

Dr. Mina J. Bissell
Distinguished Senior Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory; Faculty; Graduate Groups in Comparative Biochemistry, Endocrinology, Molecular Toxicology and Bioengineering, University of California Berkeley, Berkeley, CA, USA

Awarded “For characterizing “Dynamic Reciprocity” and the significant role that extracellular matrix (ECM) signaling and microenvironment play in gene regulation in normal and malignant cells, revolutionizing the fields of oncology and tissue homeostasis.”

The Work: Dr. Mina Bissell’s career has been driven by challenging established paradigms in cellular and developmental biology. Through her research, Dr. Bissell showed that tissue architecture plays a dominant role in determining cell and tissue phenotype and proposed the model of ‘dynamic reciprocity’ (DR) between the extracellular matrix (ECM) and chromatin within the cell nucleus. Dynamic reciprocity refers to the ongoing, bidirectional interaction between cells and their microenvironment. She demonstrated that the ECM could regulate gene expression just as gene expression could regulate ECM, and that these two phenomena could occur concurrently in normal or diseased tissue.

She also developed 3D culture systems to study the interaction of the microenvironment and tissue organization and growth, using the mammary gland as a model.

The Impact: Dr. Bissell’s model of dynamic reciprocity has been proven and thoroughly established since its proposal three decades ago and the implications have permeated every area of cell and cancer biology, with significant implications for current and future therapies. Dr. Bissell’s work has generated a fundamental and translationally crucial paradigm shift in our understanding of both normal and malignant tissues.

Her findings have had profound implications for cancer therapy by demonstrating that tumor cells can be influenced by their environment and are not just the product of their genetic mutations. For example, cells from the mammary glands grown in two-dimensional tissue cultures rapidly lose their identity, but once placed in proper three-dimensional microenvironments, they regain mammary form and function. This work presages the current excitement about generation of 3D tissue organoids and demonstrates Dr. Bissell’s creative and innovative approach to science.

Dr. Elaine Fuchs
Howard Hughes Medical Institute Investigator and Rebecca C. Lancefield Professor and Head of the Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Cell Biology; The Rockefeller University, New York, NY, USA

Awarded “For her studies elucidating the role of tissue stem cells in homeostasis, wound repair, inflammation and cancer.”

The Work: Dr. Fuchs has used skin to study how the tissues of our body are able to replace dying cells and repair wounds. The skin must replenish itself constantly to protect against dehydration and harmful microbes. In her research, Fuchs showed that this is accomplished by a resident population of adult stem cells that continually generates a shell of indestructible cells that cover our body surface.

In her early research, Fuchs identified the proteins—keratins—that produce the iron framework of the skin’s building blocks, and showed that mutations in keratins are responsible for a group of blistering diseases in humans. In her later work, Fuchs identified the signals that prompt skin stem cells to make tissue and when to stop. In studying these processes, Fuchs learned that cancers hijack the fundamental mechanisms that tissue stem cells use to repair wounds. Her team pursued this parallel and isolated and characterized the malignant stem cells that are responsible for propagating a type of cancer called “squamous cell carcinoma.” In her most recent work, she showed that these cells can be resistant to chemotherapies and immunotherapies and lead to tumor relapse.

The Impact: All tissues of our body must be able to replace dying cells and repair local wounds. Skin is particularly adept at performing these tasks. The identification and characterization of the resident skin stem cells that make and replenish the epidermis, sweat glands and hair provide important insights into this fountain of youth process and hold promise for regenerative medicine and aging. In normal tissues, the self-renewing ability of stem cells to proliferate is held in check by local inhibitory signals coming from the stem cells’ neighbours. In injury, stimulatory signals mobilize the stem cells to proliferate and repair the wound. In aging, these normal balancing cues are tipped in favour of quiescence. In inflammatory disorders, stem cells become hyperactivated. In cancers, the wound mechanisms to mobilize stem cells are hijacked, leading to uncontrolled tissue growth. Understanding the basic mechanisms controlling stem cells in their native tissue is providing new strategies for searching out refractory tumor cells in cancer and for restoring normalcy in inflammatory conditions.

2020 John Dirks Canada Gairdner Global Health Award
The 2020 John Dirks Canada Gairdner Global Health Award laureate is recognized for outstanding achievements in global health research:

Professor Salim S. Abdool Karim
Director of CAPRISA (Centre for the AIDS Program of Research in South Africa), the CAPRISA Professor in Global Health at Columbia University, New York and Pro Vice-Chancellor (Research) at the University of KwaZulu-Natal, Durban, South Africa
Professor Quarraisha Abdool Karim
Associate Scientific Director of CAPRISA, Professor in Clinical Epidemiology, Columbia University, New York and Professor in Public Health at the Nelson Mandela Medical School and Pro Vice-Chancellor (African Health) at the University of KwaZulu-Natal, Durban, South Africa

Awarded “For their discovery that antiretrovirals prevent sexual transmission of HIV, which laid the foundations for pre-exposure prophylaxis (PrEP), the HIV prevention strategy that is contributing to the reduction of HIV infection in Africa and around the world.”

The Work: UNAIDS estimates that 37 million people were living with HIV and 1.8 million people acquired HIV in 2017. In Africa, which has over two thirds of all people with HIV, adolescent girls and young women have the highest rates of new HIV infections. ABC (Abstinence, Be faithful, and use Condoms) prevention messages have had little impact – due to gender power imbalances, young women are often unable to successfully negotiate condom use, insist on mutual monogamy, or convince their male partners to have an HIV test.

In responding to this crisis, Salim and Quarraisha Abdool Karim started investigating new HIV prevention technologies for women about 30 years ago. After two unsuccessful decades, their perseverance paid off when they provided proof-of-concept that antiretrovirals prevent sexually acquired HIV infection in women. Their ground-breaking CAPRISA 004 trial showed that tenofovir gel prevents both HIV infection and genital herpes. The finding was ranked in the “Top 10 Scientific Breakthroughs of 2010” by the journal, Science. The finding was heralded by UNAIDS and the World Health Organization (WHO) as one of the most significant scientific breakthroughs in AIDS and provided the first evidence for what is today known as HIV pre-exposure prophylaxis (PrEP).

The Abdool Karims have also elucidated the evolving nature of the HIV epidemic in Africa, characterising the key social, behavioural and biological risk factors responsible for the disproportionately high HIV burden in young women. Their identification of the “Cycle of HIV Transmission”, where teenage girls acquire HIV from men about 10 years older on average, has shaped UNAIDS policies on HIV prevention in Africa.

The impact: CAPRISA 004 and several clinical trials of oral tenofovir led to the WHO recommending a daily tenofovir-containing pill for PrEP as a standard HIV prevention tool for all those at high risk a few years later. Several African countries are among the 68 countries across all continents that are currently making PrEP available for HIV prevention. The research undertaken in Africa by this South African couple has played a key role in shaping the local and global response to the HIV epidemic.

2020 Canada Gairdner Wightman Award
The 2020 Canada Gairdner Wightman Award laureate is a Canadian scientist recognized for outstanding leadership in medicine and medical science throughout their career:

Dr. Guy Rouleau
Director of the Montreal Neurological Institute-Hospital (The Neuro); Professor & Chair of the Department of Neurology and Neurosurgery, McGill University; Director of the Department of Neuroscience, McGill University Health Center

Awarded “For identifying and elucidating the genetic architecture of neurological and psychiatric diseases, including ALS, autism and schizophrenia, and his leadership in the field of Open Science.”

The Work: Dr. Rouleau has identified over 20 genetic risk factors predisposing to a range of brain disorders, both neurological and psychiatric, involving either neurodevelopmental processes or degenerative events. He has defined a novel disease mechanism for diseases related to repeat expansions that are at play in some of the most severe neurodegenerative conditions. He has significantly contributed to the understanding of the role of de novo variants in autism and schizophrenia. In addition, he has made important advances for various neuropathies, in particular for amyotrophic lateral sclerosis (ALS) where he was involved in the identification of the most prevalent genetic risk factors -which in turn are now the core of innumerable ALS studies worldwide.

Dr. Rouleau has also played a pioneering role in the practice of Open Science (OS), transforming the Montreal Neurological Institute-Hospital (The Neuro) into the first OS institution in the world. The Neuro now uses OS principles to transform research and care and accelerate the development of new treatments for patients through Open Access, Open Data, Open Biobanking, Open Early Drug Discovery and non-restrictive intellectual property.

The Impact: The identification of genetic risk factors has a number of significant consequences. First, allowing for more accurate genetic counselling, which reduces the burden of disease to affected individuals, parents and society. A revealing case is Andermann syndrome, a severe neurodevelopmental and neurodegenerative condition that was once relatively common in the Saguenay-Lac-St-Jean region of Quebec. Now this disease has almost disappeared from that population. Second, identifying the causative gene allows the development of treatments. For instance, his earlier work on a form of ALS linked to the superoxide dismutase-1 gene (SOD1) opened up studies which are now the focal point of phase 2 clinical studies showing great promise.

By acting as a living lab for the last couple of years, The Neuro is spearheading the practice of Open Science (OS). The Neuro is also engaging stakeholders across Canada with the goal of formal izing a national OS alliance for the neurosciences. Dr. Rouleau’s work in OS contributes fundamentally to the transformation of the very ecosystem of science by stimulating new thinking and fostering communities of sharing. Inspired by The Neuro’s vision, the global science community is reflecting on current research conventions and collaborative projects, and the momentum for OS is gaining a foothold in organizations and institutions in all corners of the earth.


About the Gairdner Foundation:
The Gairdner Foundation was established in 1957 by Toronto stockbroker, James Gairdner to award annual prizes to scientists whose discoveries have had major impact on scientific progress and on human health. Since 1959 when the first awards were granted, 387 scientists have received a Canada Gairdner Award and 92 to date have gone on to receive the Nobel Prize. The Canada Gairdner Awards promote a stronger culture of research and innovation across the country through our Outreach Programs including lectures and research symposia. The programs bring current and past laureates to a minimum of 15 universities across Canada to speak with faculty, trainees and high school students to inspire the next generation of researchers. Annual research symposia and public lectures are organized across Canada to provide Canadians access to leading science through Gairdner’s convening power.

For further information please contact:
Sommer Wedlock
Vice President & Director of Communications
MaRS Centre, Heritage Building
101 College Street, Suite 335
Toronto, Ontario. M5G 1L7
Office: (416) 596-9996 ext. 202
Mobile: (647) 293-6785

Federal Government invests $1m in Gairdner Foundation

February 27, 2018 [OTTAWA] The Gairdner Foundation is pleased with the Government of Canada’s historic investment of nearly $4 billion over five years in Budget 2018 to support the next generation of researchers through investments in Canada’s granting councils, the Canada Research Chairs and in essential equipment and infrastructure to support innovative research discoveries. We commend the Government’s recognition of the importance of fundamental research in driving innovation and improved health outcomes for Canadians.

Gairdner is also thrilled that the government will continue to support our activities both within Canada and internationally, with a focus on expanding the diversity of our laureates, through an investment of $1 million over the next five years. Our outreach programs celebrate biomedical and global health research and also play a key role in inspiring the next generation to pursue careers in STEM.

Read full press release here: EN  / FR  

Montreal, Québec – May 9, 2017 – Rémi Quirion, Chief Scientist of Québec, announced today that the Government of Québec through Fonds de recherche du Québec- Santé (FRQS) has signed a three year deal with the Gairdner Foundation to enhance scientific programming in the province. The announcement, which was made in partnership with Dr. Janet Rossant, Gairdner’s President & Scientific Director, demonstrates the government’s focus on providing access to ground breaking research and signals its intent to cultivate and inspire future generations of scientists.

The partnership, a $300,000 agreement spanning the next three years will support student, faculty and public lectures as well as academic symposia throughout Québec. The Foundation, which currently provides student outreach and faculty lectures at more than 15 universities across Canada each year, will use the funding to bolster its current programming in Québec. It will also initiate a new public lecture series that will discuss scientific research at issue for today’s citizens.

Download Press Release in EN  / FR  

Chaque année, sept prix sont décernés : cinq Prix internationaux Canada Gairdner pour la recherche biomédicale, le Prix Canada Gairdner en santé mondiale John Dirks, attribué pour l’impact sur les questions de santé mondiale, et le Prix Canada Gairdner Wightman, réservé à un scientifique canadien témoignant de l’excellence et du leadership scientifique.

TORONTO, ON (March 28, 2017) – The Gairdner Foundation is pleased to announce the 2017 Canada Gairdner Award laureates, recognizing some of the most significant medical discoveries from around the world. The Awards carry an honorarium of $100,000 for each of the seven awards and will be presented at a Gala in Toronto on October 26, 2017.

TORONTO, ON (28 mars 2017) – la Fondation Gairdner a le plaisir d’annoncer les lauréats des Prix Canada Gairdner 2017, reconnaissant ainsi certaines des plus importantes découvertes médicales dans le monde. Les Prix s’accompagnent d’une somme de 100 000 $ pour chacun des sept prix, qui seront remis lors d’un gala, à Toronto, le 26 octobre 2017.